Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Young Do Kim 28 Articles
Effect of Hot Isostatic Pressing on the Stellite 6 Alloy prepared by Directed Energy Deposition
Joowon Suh, Jae Hyeon Koh, Young-Bum Chun, Young Do Kim, Jinsung Jang, Suk Hoon Kang, Heung Nam Han
J Powder Mater. 2024;31(2):152-162.   Published online April 30, 2024
DOI: https://doi.org/10.4150/jpm.2024.00066
  • 235 View
  • 9 Download
AbstractAbstract PDF
The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150oC under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.
Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target
Won Hee Lee, Chun Woong Park, Heeyeon Kim, Yuncheol Ha, Jongmin Byun, Young Do Kim
J Powder Mater. 2024;31(1):43-49.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.43
  • 248 View
  • 13 Download
PDF
Alloy Design and Powder Manufacturing of Al-Cu-Si alloy for Low-Temperature Aluminum Brazing
Heeyeon Kim, Chun Woong Park, Won Hee Lee, Young Do Kim
J Powder Mater. 2023;30(4):339-345.   Published online August 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.4.339
  • 69 View
  • 3 Download
AbstractAbstract PDF

This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520°C. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515°C following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys
GooWon Noh, Young Do Kim, Kee-Ahn Lee, Hwi-Jun Kim
J Powder Mater. 2020;27(1):8-13.   Published online February 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.1.8
  • 76 View
  • 2 Download
  • 1 Citations
AbstractAbstract PDF

In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 °C to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.

Citations

Citations to this article as recorded by  
  • Additive manufacturing of oxide-dispersion strengthened alloys: Materials, synthesis and manufacturing
    Markus B. Wilms, Silja-Katharina Rittinghaus, Mareen Goßling, Bilal Gökce
    Progress in Materials Science.2023; 133: 101049.     CrossRef
Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder
Min-Ho Cho, Sung-Jun Kim, Hyun-Ji Kang, Sung-Tag Oh, Young Do Kim, Seong Lee, Myung Jin Suk
J Powder Mater. 2019;26(4):299-304.   Published online August 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.4.299
  • 35 View
  • 0 Download
AbstractAbstract PDF

Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and T2 phases. The T2 phase is an intermetallic compound with a stoichiometry of Nb5Si3-xBx (0 ≤ x ≤ 2). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and T2 powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise T2 and eutectic (T2 + Nb) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.

Effect of Photo Initiator Content and Light Exposure Time on the Fabrication of Al2O3 Ceramic by DLP-3D Printing Method
Kyung Min Kim, Hyeondeok Jeong, Yoon Soo Han, Su-Hyun Baek, Young Do Kim, Sung-Soo Ryu
J Powder Mater. 2019;26(4):327-333.   Published online August 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.4.327
  • 35 View
  • 0 Download
AbstractAbstract PDF

In this study, a process is developed for 3D printing with alumina (Al2O3). First, a photocurable slurry made from nanoparticle Al2O3 powder is mixed with hexanediol diacrylate binder and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The optimum solid content of Al2O3 is determined by measuring the rheological properties of the slurry. Then, green bodies of Al2O3 with different photoinitiator contents and UV exposure times are fabricated with a digital light processing (DLP) 3D printer. The dimensional accuracy of the printed Al2O3 green bodies and the number of defects are evaluated by carefully measuring the samples and imaging them with a scanning electron microscope. The optimum photoinitiator content and exposure time are 0.5 wt% and 0.8 s, respectively. These results show that Al2O3 products of various sizes and shapes can be fabricated by DLP 3D printing.

Fabrication of Molybdenum Alloys with Improved Fracture Toughness through the Dispersion of Lanthanum Oxide
Won June Choi, Chun Woong Park, Jung Hyo Park, Young Do Kim, Jongmin Byun
J Powder Mater. 2019;26(3):208-213.   Published online June 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.3.208
  • 30 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

In this study, lanthanum oxide (La2O3) dispersed molybdenum (Mo–La2O3) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of La2O3 dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of La2O3 from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the Mo–0.3La2O3 specimen sintered by pressureless sintering is approximately 99%, and La2O3 with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is 19.46 MPa·m1/2, an improvement of approximately 40% over the fracture toughness of 13.50 MPa·m1/2 on a pure-Mo specimen without La2O3, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of La2O3.

Citations

Citations to this article as recorded by  
  • Sintering property of micro/nano core-shell molybdenum powder synthesized by mechanochemical process
    Chun Woong Park, Heeyeon Kim, Won Hee Lee, Wonjune Choi, Jongmin Byun, Young Do Kim
    International Journal of Refractory Metals and Hard Materials.2024; 119: 106532.     CrossRef
  • Novel design of Mo-Si-B + La2O3 powder with multi-shell structure for ideal microstructure and enhanced mechanical property
    Wonjune Choi, Chun Woong Park, Young Do Kim, Jongmin Byun
    International Journal of Refractory Metals and Hard Materials.2024; 120: 106611.     CrossRef
Research Trends of the Mo-Si-B Alloys as Next Generation Ultra-high-temperature Alloys
Won June Choi, Chun Woong Park, Jung Hyo Park, Young Do Kim, Jong Min Byun
J Powder Mater. 2019;26(2):156-165.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.156
  • 80 View
  • 1 Download
  • 4 Citations
AbstractAbstract PDF

Over the last decade, the next generation’s ultra-high-temperature materials as an alternative to Nickel-based superalloys have been highlighted. Ultra-high-temperature materials based on refractory metals are one of several potential candidates. In particular, molybdenum alloys with small amounts of silicon and boron (Mo-Si-B alloys) have superior properties at high temperature. However, research related to Mo-Si-B alloys were mainly conducted by several developed countries but garnered little interest in Korea. Therefore, in this review paper, we introduce the development history of Mo-Si-B alloys briefly and discuss the properties, particularly the mechanical and oxidation properties of Mo-Si-B alloys. We also introduce the latest research trends of Mo-Si-B alloys based on the research paper. Finally, for domestic research related to this field, we explain why Mo-Si-B alloys should be developed and suggest the potential directions for Mo-Si-B alloys research.

Citations

Citations to this article as recorded by  
  • Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying
    Minsu Kim, Hansung Lee, Byungmin Ahn
    journal of Korean Powder Metallurgy Institute.2023; 30(6): 478.     CrossRef
  • Preparation and Structure of Chromium Coatings Doped with Diamond Nanoparticles Deposited Directly on a Monolithic Composite of Molybdenum and Aluminum
    V. P. Petkov, M. K. Aleksandrova, R. V. Valov, V. P. Korzhov, V. M. Kiiko, I. S. Zheltyakova
    Protection of Metals and Physical Chemistry of Surfaces.2023; 59(3): 396.     CrossRef
  • A Review of Mo-Si Intermetallic Compounds as Ultrahigh-Temperature Materials
    Liang Jiang, Bin Zheng, Changsong Wu, Pengxiang Li, Tong Xue, Jiandong Wu, Fenglan Han, Yuhong Chen
    Processes.2022; 10(9): 1772.     CrossRef
  • Heat-Resistant Molybdenum Borosilicate Alloys Hardened with Titanium Carbides: Mo–Si–B–TiC (Survey)
    I. L. Svetlov, O. G. Ospennikova, M. I. Karpov, Yu. V. Artemenko
    Inorganic Materials: Applied Research.2021; 12(4): 866.     CrossRef
Analysis on Milling Behavior of Oxide Dispersion Strengthened Ni-based Atomizing Powder with Ni5Y Intermetallic Phase
Chun Woong Park, Jong Min Byun, Won June Choi, Young Do Kim
J Powder Mater. 2019;26(2):101-106.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.101
  • 65 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better hightemperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the Ni5Y intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the Ni5Y is the intermetallic phase. As the milling time increased, the Ni5Y intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.

Citations

Citations to this article as recorded by  
  • Efficient prediction of corrosion behavior in ternary Ni-based alloy systems: Theoretical calculations and experimental verification
    Xuelian Xiao, Keke Chang, Kai Xu, Ming Lou, Liping Wang, Qunji Xue
    Journal of Materials Science & Technology.2023; 167: 94.     CrossRef
  • Effect of high-energy ball milling on the microstructure and mechanical properties of Ni-based ODS alloys fabricated using gas-atomized powder
    Chun Woong Park, Won June Choi, Jongmin Byun, Young Do Kim
    Journal of Materials Science.2022; 57(38): 18195.     CrossRef
Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide
Won June Choi, Chun Woong Park, Young Do Kim, Jong Min Byun
J Powder Mater. 2018;25(5):402-407.   Published online October 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.5.402
  • 28 View
  • 0 Download
AbstractAbstract PDF

Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500°C for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture
Ho-Suk Lee, Kyu-Hee Lee, Sung-Tag Oh, Young Do Kim, Myung-Jin Suk
J Powder Mater. 2018;25(4):336-339.   Published online August 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.4.336
  • 56 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphornaphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Citations

Citations to this article as recorded by  
  • Freeze Drying Process and Pore Structure Characteristics of Porous Cu with Various Sublimable Vehicles
    Gyuhwi Lee, Sung-Tag Oh, Myung-Jin Suk, Young-Keun Jeong
    Journal of Korean Powder Metallurgy Institute.2020; 27(3): 198.     CrossRef
Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant
Jong Min Byun, Chun Woong Park, Young In Kim, Young Do Kim
J Powder Mater. 2018;25(3):257-262.   Published online June 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.3.257
  • 41 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of TiO2, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile TiO2 because these coupled TiO2 powders can retain the benefits of TiO2, one of the best photocatalysts. In this study, anatase TiO2 nanoparticles are synthesized and coupled on the surface of rutile TiO2 powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase TiO2 nanoparticles and disperse anatase TiO2 nanoparticles uniformly on the surface of rutile TiO2 powders. Rutile TiO2 powders coupled with anatase TiO2 nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled TiO2 powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.

Citations

Citations to this article as recorded by  
  • Refractory Metal Oxide–Doped Titanate Nanotubes: Synthesis and Photocatalytic Activity under UV/Visible Light Range
    Min-Sang Kim, Hyun-Joo Choi, Tohru Sekino, Young-Do Kim, Se-Hoon Kim
    Catalysts.2021; 11(8): 987.     CrossRef
  • Effect of Surfactant on the Dispersion Stability of Slurry for Semiconductor Silicon CMP
    Hye Won Yun, Doyeon Kim, Do Hyung Han, Dong Wan Kim, Woo-Byoung Kim
    Journal of Korean Powder Metallurgy Institute.2018; 25(5): 395.     CrossRef
Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite
Won Ju, Young Do Kim, Jae Jin Sim, Sang-Hoon Choi, Soong Keun Hyun, Kyoung Mook Lim, Kyoung-Tae Park
J Powder Mater. 2017;24(5):377-383.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.377
  • 40 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of 900°C for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Citations

Citations to this article as recorded by  
  • Formation mechanism, microstructural features and dry-sliding behaviour of “Bronze/WC carbide” composite synthesised by atmospheric pulsed-plasma deposition
    V.G. Efremenko, Yu.G. Chabak, V.I. Fedun, K. Shimizu, T.V. Pastukhova, I. Petryshynets, A.M. Zusin, E.V. Kudinova, B.V. Efremenko
    Vacuum.2021; 185: 110031.     CrossRef
The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes
Chun Woong Park, Young Do Kim, Tohru Sekino, Se Hoon Kim
J Powder Mater. 2017;24(4):279-284.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.279
  • 34 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/TiO2- based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electronhole recombination efficiency.

Citations

Citations to this article as recorded by  
  • Low-Dimensional Carbon and Titania Nanotube Composites via a Solution Chemical Process and Their Nanostructural and Electrical Properties for Electrochemical Devices
    Sunghun Eom, Sung Hun Cho, Tomoyo Goto, Myoung Pyo Chun, Tohru Sekino
    ACS Applied Nano Materials.2019; 2(10): 6230.     CrossRef
Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs
Hye Rim Choi, Jong Min Byun, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
J Powder Mater. 2016;23(3):235-239.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.3.235
  • 27 View
  • 0 Download
AbstractAbstract PDF

This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride (TiH2) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane (CH4) gas to increase the specific surface area. The synthesized Ti porous body has 100 μm-sized macropores and 10-30 μm-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.

Research Trend of Additive Manufacturing Technology
Hanshin Choi, Jong Min Byun, Wonsik Lee, Su-Ryong Bang, Young Do Kim
J Powder Mater. 2016;23(2):149-169.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.149
  • 58 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF

Additive manufacturing (AM) is defined as the manufacture of three-dimensional tangible products by additively consolidating two-dimensional patterns layer by layer. In this review, we introduce four fundamental conceptual pillars that support AM technology: the bottom-up manufacturing factor, computer-aided manufacturing factor, distributed manufacturing factor, and eliminated manufacturing factor. All the conceptual factors work together; however, business strategy and technology optimization will vary according to the main factor that we emphasize. In parallel to the manufacturing paradigm shift toward mass personalization, manufacturing industrial ecology evolves to achieve competitiveness in economics of scope. AM technology is indeed a potent candidate manufacturing technology for satisfying volatile and customized markets. From the viewpoint of the innovation technology adoption cycle, various pros and cons of AM technology themselves prove that it is an innovative technology, in particular a disruptive innovation in manufacturing technology, as powder technology was when ingot metallurgy was dominant. Chasms related to the AM technology adoption cycle and efforts to cross the chasms are considered.

Citations

Citations to this article as recorded by  
  • SiC-Si composite part fabrication via SiC powder binder jetting additive manufacturing and molten-Si infiltration
    Ji-Won Oh, Jinsu Park, Sahn Nahm, Hanshin Choi
    International Journal of Refractory Metals and Hard Materials.2021; 101: 105686.     CrossRef
  • Recent Trends and Application Status of the Metal Matrix Composites (MMCs)
    Hyo-Seop Kim
    Journal of Korean Powder Metallurgy Institute.2020; 27(2): 164.     CrossRef
  • Metal Additive Manufacturing Cycle in Aerospace Industry: A Comprehensive Review
    B. Barroqueiro, A. Andrade-Campos, R. A. F. Valente, V. Neto
    Journal of Manufacturing and Materials Processing.2019; 3(3): 52.     CrossRef
  • Technology Trend of the additive Manufacturing (AM)
    Ji-Won Oh, Hyunwoong Na, Hanshin Choi
    Journal of Korean Powder Metallurgy Institute.2017; 24(6): 494.     CrossRef
Research Trend of Fe/Ni Based Oxide Dispersion Strengthened Alloys
Chun Woong Park, Jong Min Byun, Jong Kwan Park, Young Do Kim
J Powder Mater. 2016;23(1):61-68.   Published online February 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.1.61
  • 66 View
  • 0 Download
  • 1 Citations
PDF

Citations

Citations to this article as recorded by  
  • Effect of high-energy ball milling on the microstructure and mechanical properties of Ni-based ODS alloys fabricated using gas-atomized powder
    Chun Woong Park, Won June Choi, Jongmin Byun, Young Do Kim
    Journal of Materials Science.2022; 57(38): 18195.     CrossRef
Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process
Sang-Hwan Kim, Nam-Woo Kim, Young-Keun Jeong, Sung-Tag Oh, Young Do Kim, Seong Lee, Myung Jin Suk
J Powder Mater. 2015;22(6):426-431.   Published online December 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.6.426
  • 38 View
  • 0 Download
  • 5 Citations
AbstractAbstract PDF

Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and T2 phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb- Si-B ternary system are prepared by spark plasma sintering (SPS) process using T2 and Nb powders. T2 bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The T2 bulk phase was subsequently ballmilled to powders. SPS is performed at 1300°C and 1400°C, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Citations

Citations to this article as recorded by  
  • Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder
    Min-Ho Cho, Sung-Jun Kim, Hyun-Ji Kang, Sung-Tag Oh, Young Do Kim, Seong Lee, Myung Jin Suk
    Journal of Korean Powder Metallurgy Institute.2019; 26(4): 299.     CrossRef
  • Mechanical properties of Mo-Nb-Si-B quaternary alloy fabricated by powder metallurgical method
    Jong Min Byun, Su-Ryong Bang, Se Hoon Kim, Won June Choi, Young Do Kim
    International Journal of Refractory Metals and Hard Materials.2017; 65: 14.     CrossRef
  • Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles
    Jong Min Byun, Su-Ryong Bang, Won June Choi, Min Sang Kim, Goo Won Noh, Young Do Kim
    Metals and Materials International.2017; 23(1): 170.     CrossRef
  • Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method
    Jong Min Byun, Won June Choi, Su-Ryong Bang, Chun Woong Park, Young Do Kim
    JOM.2017; 69(4): 683.     CrossRef
  • Rapid consolidation of nanostuctured WC-FeAl3 by pulsed current activated heating and its mechanical properties
    In-Jin Shon, Seok-Jae Lee
    International Journal of Refractory Metals and Hard Materials.2017; 65: 69.     CrossRef
Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition
Hogyu Kim, Hye Rim Choi, Jong Min Byun, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
J Powder Mater. 2015;22(2):122-128.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.122
  • 38 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane(CH4) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.

Citations

Citations to this article as recorded by  
  • Solvent induced surface modifications on hydrogen storage performance of ZnO nanoparticle decorated MWCNTs
    Madhavi Konni, Anima S. Dadhich, Saratchandra Babu Mukkamala
    Sustainable Energy & Fuels.2018; 2(2): 466.     CrossRef
  • Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs
    Ye-Ji Han, Soo-Jin Park
    Applied Surface Science.2017; 415: 85.     CrossRef
Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts
Ki Cheol Jeon, Young Do Kim, Myung-Jin Suk, Sung-Tag Oh
J Powder Mater. 2015;22(2):129-133.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.129
  • 41 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and WO3 powder compacts. The PMMA sizes of 8 and 50 μm were used as pore forming agent for fabricating the porous W. The WO3 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1200°C in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about 400°C and WO3 was reduced to metallic W at 800°C. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.

Citations

Citations to this article as recorded by  
  • Synthesis of Porous Silica Particles Using Sodium Silicate Precursor for Water-Repellent Surfaces
    Young-Sang Cho, Nahee Ku, Young-Seok Kim
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN.2019; 52(2): 194.     CrossRef
The Fabrication of Cobalt Nanopowder by Sonochemical Polyol Synthesis of Cobalt Hydroxide and Magnetic Separation Method
Jong Min Byun, Myoung Hwan Choi, Chang Min Shim, Ji Young Kim, Young Do Kim
J Powder Mater. 2015;22(1):39-45.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.39
  • 38 View
  • 0 Download
AbstractAbstract PDF

In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at 220°C for up to 120 minutes in diethylene glycol (C4H10O3). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor (Co(OH)2) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.

A Precipitation Behavior of Nano-Oxide Particles in Mechanically Alloyed Fe-5Y2O3 Powders
Ga Eon Kim, Sanghoon Noh, Ji Eun Choi, Young Do Kim, Tae Kyu Kim
J Powder Mater. 2015;22(1):46-51.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.46
  • 66 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

A precipitation behavior of nano-oxide particle in Fe-5Y2O3 alloy powders is studied. The mechanically alloyed Fe-5Y2O3 powders are pressed at 750°C for 1h, 850°C for 1h and 1150°C for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the Y2O3 diffraction peak disappear after mechanically alloying process, but Y2O3 and YFe2O4 complex oxide precipitates peak are observed in the powders pressed at 1150°C. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around 1054°C. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-5Y2O3 alloy powders pressed at 1150°C. It is thus conclude that the mechanically alloyed Fe-5Y2O3 powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment.

Citations

Citations to this article as recorded by  
  • Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles
    Jong Min Byun, Su-Ryong Bang, Won June Choi, Min Sang Kim, Goo Won Noh, Young Do Kim
    Metals and Materials International.2017; 23(1): 170.     CrossRef
Enhancement of Coercivity for Nd-Fe-B Sintered Magnets
Se Hoon Kim, Jin Woo Kim, Jong Min Byun, Young Do Kim
J Powder Mater. 2015;22(1):60-67.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.60
  • 42 View
  • 0 Download
  • 3 Citations
PDF

Citations

Citations to this article as recorded by  
  • Study on the Demagnetization and Classification of NdFeB Magnets According to Different Heat Treatment Temperatures
    Byeong Jun Kim, Ik Keun Park, Young Sung Kim
    Journal of the Korean Society of Manufacturing Technology Engineers.2021; 30(2): 119.     CrossRef
  • Study on Demagnetization and Magnetization to Reuse NdFeB-based Magnets
    Byeong Jun Kim, Young Sung Kim, Gi Tae Joo, Joon Hyun Kim, Ik Geun Park, Jae Yong Lee, Su Won Yang
    Journal of the Korean Society of Manufacturing Technology Engineers.2021; 30(4): 269.     CrossRef
  • Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation
    Jimin Lee, Jongryoul Kim, Yong-Ho Choa
    Journal of Korean Powder Metallurgy Institute.2019; 26(4): 334.     CrossRef
Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding
Hyung Soo Kim, Jong Min Byun, Myung Jin Suk, Young Do Kim
J Powder Mater. 2014;21(6):407-414.   Published online December 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.6.407
  • 27 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide (CO2) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical CO2 was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at 50° and 20 MPa that represents the lowest extraction rate, 8.19 × 10−3 m2/sec, corresponds to the largest grain size of 14.7 μm and the highest optical transmittance of 45.2%.

Citations

Citations to this article as recorded by  
  • Experimental and numerical analysis of effects of supercritical carbon dioxide debinding on Inconel 718 MIM components
    Dugauguez Olivier, Agne Aboubabky, Jimenez-Morales Antonia, Torralba José Manuel, Barriere Thierry
    Powder Technology.2019; 355: 57.     CrossRef
CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace
Ju Hyuk Park, Jong Min Byun, Hyung Soo Kim, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
J Powder Mater. 2014;21(5):371-376.   Published online October 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.5.371
  • 48 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase (Fe2TiO5) above 700°C, the decrease of CNT yield above 800°C where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set 700/950°C (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of 700/950°C, it was confirmed that CNTs show the bamboo-like structure.

Citations

Citations to this article as recorded by  
  • Fabrication of Ti Porous body with Improved Specific Surface Area by Synthesis of CNTs
    Hye Rim Choi, Jong Min Byun, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
    Journal of Korean Powder Metallurgy Institute.2016; 23(3): 235.     CrossRef
  • Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition
    Hogyu Kim, Hye Rim Choi, Jong Min Byun, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
    Journal of Korean Powder Metallurgy Institute.2015; 22(2): 122.     CrossRef
A study on the Powder Injection Molding of Translucent Alumina via Flowability Simulation of Powder/Binder Mixture
Hyung Soo Kim, Jong Min Byun, Se Hoon Kim, Young Do Kim
J Powder Mater. 2014;21(3):215-221.   Published online June 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.3.215
  • 24 View
  • 0 Download
AbstractAbstract PDF

Translucent alumina is a potential candidate for high temperature application as a replacement of the glass or polymer. Recently, due to the increasing demand of high power light emitting diode (LED), there is a growing interest in the translucent alumina. Since the translucent property is very sensitive to the internal defect, such as voids inside or abnormal grain growth of sintered alumina, it is important to fabricate the defect-free product through the fabrication process. Powder injection molding (PIM) has been commonly applied for the fabrication of complex shaped products. Among the many parameters of PIM, the flowability of powder/binder mixture becomes more significant especially for the shape of the cavity with thin thickness. Two different positions of the gate were applied during PIM using the disc type of die. The binder was removed by solvent extraction method and the brown compact was sintered at 1750°C for 3 hours in a vacuum. The flowability was also simulated using moldflow (MPI 6.0) with two different types of gate. The effect of the flowability of powder/binder mixture on the microstructure of the sintered specimen was studied with the analysis of the simulation result.

Synthesis of Pt@TiO2 Nano-composite via Photochemical Reduction Method
Ji Young Kim, Jong Min Byun, Jin Woo Kim, Young Do Kim
J Powder Mater. 2014;21(2):119-123.   Published online April 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.2.119
  • 37 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

Pt has been widely used as catalyst for fuel cell and exhausted gas clean systems due to its high catalytic activity. Recently, there have been researches on fabricating composite materials of Pt as a method of reducing the amount of Pt due to its high price. One of the approaches for saving Pt used as catalyst is a core shell structure consisting of Pt layer on the core of the non-noble metal. In this study, the synthesis of Pt shell was conducted on the surface of TiO2 particle, a non-noble material, by applying ultraviolet (UV) irradiation. Anatase TiO2 particles with the average size of 20~30 nm were immersed in the ethanol dissolved with Pt precursor of H2PtCl6∙6H2O and exposed to UV irradiation with the wavelength of 365 nm. It was confirmed that Pt nano-particles were formed on the surface of TiO2 particles by photochemical reduction of Pt ion from the solution. The morphology of the synthesized Pt@TiO2 nano-composite was examined by TEM (Transmission Electron Microscopy).

Citations

Citations to this article as recorded by  
  • Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant
    Jong Min Byun, Chun Woong Park, Young In Kim, Young Do Kim
    journal of Korean Powder Metallurgy Institute.2018; 25(3): 257.     CrossRef
  • Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders
    Hyeong-Chul Kim, Jae-Kil Han
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 33.     CrossRef
Study on Surface Modification of Ti Substrate to Improve the Dispersion of Catalytic Metals on Synthesis of Carbon Nanotubes
Seoung Yeol Kwak, Ho Gyu Kim, Jong Min Byun, Ju Hyuk Park, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
J Powder Mater. 2014;21(1):28-33.   Published online February 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.1.28
  • 28 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF

This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the catalytic metal. Etching of a pure titanium substrate was conducted in 50% H2SO4, 50°C for 1 h-12 h to observe the surface roughness as a function of the etching time. At 1 h, the grain boundaries were obvious and the crystal grains were distinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than 1 μm in diameter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the catalytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distribution trends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.

Citations

Citations to this article as recorded by  
  • Solvent induced surface modifications on hydrogen storage performance of ZnO nanoparticle decorated MWCNTs
    Madhavi Konni, Anima S. Dadhich, Saratchandra Babu Mukkamala
    Sustainable Energy & Fuels.2018; 2(2): 466.     CrossRef
  • Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs
    Ye-Ji Han, Soo-Jin Park
    Applied Surface Science.2017; 415: 85.     CrossRef
  • Spontaneous Formation of Titanium Nitride on the Surface of a Ti Rod Induced by Electro-Discharge-Heat-Treatment in an N2 Atmosphere
    W.H. Lee, Y.H. Yoon, Y.H. Kim, Y.K. Lee, J.Y. Kim, S.Y. Chang
    Archives of Metallurgy and Materials.2017; 62(2): 1281.     CrossRef
  • Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition
    Hogyu Kim, Hye Rim Choi, Jong Min Byun, Myung-Jin Suk, Sung-Tag Oh, Young Do Kim
    Journal of Korean Powder Metallurgy Institute.2015; 22(2): 122.     CrossRef

Journal of Powder Materials : Journal of Powder Materials